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Abstract. This paper describes a framework for recognizing human ac-
tions in videos by incorporating a new set of visual cues that represent
the context of the action. We develop a weak foreground-background
segmentation approach in order to robustly extract not only foreground
features that are focused on the actors, but also global camera motion
and contextual scene information. Using dense point trajectories, our
approach separates and describes the foreground motion from the back-
ground, represents the appearance of the extracted static background,
and encodes the global camera motion that interestingly is shown to
be discriminative for certain action classes. Our experiments on four
challenging benchmarks (HMDB51, Hollywood2, Olympic Sports, and
UCF50) show that our contextual features enable a significant perfor-
mance improvement over state-of-the-art algorithms.

1 Introduction

Human action recognition is a challenging task for computer vision algorithms
due to the large variabilities in video data caused by occlusions, camera motion,
actor and scene appearances, among others. A popular current trend in action
recognition methods relies on using local video descriptors to represent visual
events in videos [4, 12, 22]. These features are usually aggregated into a com-
pact representation, namely the bag-of-features (BoF) representation [13]. The
advantage of this simple representation is that it avoids difficult pre-processing
steps such as motion segmentation and tracking. In the BoF representation, lo-
cal descriptors are quantized using a pre-computed codebook of visual patterns.
This representation combined with discriminative classifiers such as support vec-
tor machines (SVM), has been quite successful in recognizing human actions in
controlled scenarios [3,21]. Due to its simplicity, BoF requires the use of strong,
robust and informative features, which can be obtained reliably in such simplified
scenarios.

However, recent efforts have been made to collect more realistic video datasets
(e.g. from movies and personal videos uploaded to video sharing websites [11,
15]), which are useful for evaluating human action recognition methods in more
natural settings. In fact, these datasets represent a challenge for existing BoF-
based methods due to dynamic backgrounds, variations in illumination and view-
point, and camera motion among other visual nuisances that can severely affect
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recognition performance. To mitigate the effect of camera motion in describing
the action of interest in a video, recent methods [22, 23] have proposed using
dense point trajectories in a video. In fact, these trajectories can separate back-
ground from foreground using a simple camera motion model (i.e. an affine or
homography transform between consecutive frames). Such separation allows ac-
tion recognition approaches to robustly extract and describe foreground motion,
which is otherwise contaminated by camera motion and the background. Inspired
by this work, our proposed method also makes use of these dense trajectories;
however, we enlist a more general camera model (by estimating the fundamental
matrix between video frames) that allows for a more reliable separation between
foreground and background pixels, especially in non-planar cluttered scenes.

Unlike most other methods, we claim that the context of a human action,
namely global camera motion and static background appearance, can also be
used to discriminate between certain human actions. These cues are considered
as contextual features for an action, which would allow classification algorithms
to mine the relationship between the human action and both the background
scene as well as the camera motion. The appearance of the scene in which an
action occurs can be helpful in recognizing the action, as validated by previous
work in [15]. For example, a ‘cooking’ action tends to occur indoors, while a
‘jogging’ action usually exists outdoors. Interestingly, the manner in which the
cameraman records a particular action can also be indicative of the action. For
example, camera zoom with minimal panning usually indicates an action that
is spatially limited to a smaller physical space (e.g. juggling balls), while signif-
icant panning is indicative of actions that require a much larger spatial support
(e.g. practicing long jump). Our proposed approach mines these two sources of
contextual information, as well as, the separated foreground motion to describe
and recognize an action. Figure 1 illustrates our claims.

Related work

A large body of work has studied the problem of human action recognition in
video. For a survey of this work, we refer the reader to [1]. In this section, we
give an overview of previous work that is most relevant to our proposed method.

Action Recognition Pipeline. The majority of action recognition methods rely on
local descriptors to represent visual events in videos [4,12,22]. Traditionally, these
features are usually aggregated into a compact representation using the bag-
of-features (BoF) framework [5, 13]. Moreover, recent studies show that using
soft encoding techniques, such as Fisher Vectors [19] and Vectors of Locally
Aggregated Descriptors (VLAD) [9], can lead to a boost in action recognition
performance. These representations combined with discriminative classifiers such
as support vector machines (SVM), have been quite successful in discriminating
human action classes. However, as discussed in [24], there remain many details of
the overall action recognition pipeline that can be extensively explored, including
feature extraction, feature pre-procesing, codebook generation, feature encoding
and pooling and normalization. In this paper, we propose a new set of features
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Fig. 1. Some human actions have important correlations with surrounding cues. As
observed in the first row, there is a video sequence associated with the human action
pole vault. It is also noticeable that the camera moves according to some specific patron
for capturing the movement of the subject. Specifically, the camera moves within dolly
panning tracking when the athlete is approaching the plant and take off. Then, camera
slightly starts to tilling up and tilling down when the person is flying away and falling
respectively. Additionally, a better description can be performed if visual appearance
of the track field is captured.

that can be used to address some of the limitations of conventional feature
extraction methods.

Feature Extraction. When applied to videos with substantial camera motion,
traditional feature extraction approaches [4,12] tend to generate a large number
of features, which are inherently dependent on the camera motion in a video,
thus, limiting their discriminative power among action classes. In order to over-
come this issue, Wu et al. [25] propose the use of Lagrangian point trajectories
for action description in videos captured by moving cameras. Their method com-
pensates for global camera motion by only extracting features that exhibit mo-
tion that is independent of the camera motion, thus, outperforming traditional
feature extraction algorithms. In [2], these trajectories are used to recognize hu-
man actions using Fisher Kernel features for discrimination. Park et al. [18] use
a weak video stabilization method based on extracting coarse optical flow to
isolate limb motion while canceling pedestrian translation and camera motion.
Wang et al. [22] present a method for action recognition using dense sampling of
point trajectories. Their method handles large camera motions by limiting the
maximum length of tracked trajectories. Despite their simplicity, these dense
trajectory features have been shown to achieve a significant performance im-
provement as compared to conventional spatiotemporal point features [12].
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More recent methods improve upon the aforementioned dense trajectory fea-
tures. For example, Jain et al. [8] propose a method to estimate more reliable
trajectory features for action recognition. This method lends additional relia-
bility and robustness to trajectory extraction by decomposing optical flow into
dominant and residual motions. Dominant motion is estimated using an affine
frame-to-frame motion model and is subtracted from the computed optical flow
to obtain the residual motion, which is attributed to the human action of inter-
est. Similarly, ‘improved trajectories’ are proposed in [23] to stabilize features
and compensate for simple camera motion. This is done by fitting a frame-to-
frame homography (using RANSAC) to separate moving points of the human
action from those of the background. By explicitly canceling out the camera
motion, their framework improves the performance of several motion descrip-
tors, including trajectory shape, histogram of optical flow (HOF), and motion
boundary histograms (MBH). While these methods have been successful in sep-
arating background and residual motions, contextual cues of actions are usually
discarded, thus, ignoring relevant information such as static scene appearance
and distinctive camera motions correlated with some actions.

Moreover, a few approaches have investigated ways to involve background
scene information in the action recognition pipeline. Marszalek et al. [15] in-
corporate context information from movie scripts by modeling the relationship
between human actions and static scenes based on textual co-occurrence. While
such textual co-occurrence helps recognition, they are restricted only to video
sources where scripts are available. In [7], multiple feature channels are integrated
from different sources of information including human motion, scene information,
and objects in the scene. However, this approach makes use of all pixels (corre-
sponding to both the human action and background scene) to generate a global
descriptor of the static scene [17]. Rather than computing a holistic represen-
tation, our proposed method computes a static scene descriptor only from the
extracted background, a motion descriptor from the extracted foreground tra-
jectories, and a camera motion descriptor from the estimated transformations
between consecutive frames.

In this paper, our goal is to reliably alleviate the effect of camera motion,
as well as, incorporate features describing the surrounding of an action to build
a richer representation for human actions. We are motivated by the fact that
most videos are filmed with an intention and therefore there exists a correlation
between the inherent camera motion in a video and the portrayed human action
itself. We encode this intention with a weak camera motion model based on
frame-to-frame fundamental matrices in a video. To the best of our knowledge,
this is the first work to mine such a relationship between human actions and the
filming process.

2 Proposed Methodology

This section gives a detailed description of our proposed approach for action
recognition in video. The methodology in this paper follows the conventional
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Fig. 2. Given a video sequence, a set of dense point trajectories are extracted. Then,
a fundamental matrix is estimated and used to compensate for camera motion and to
separate foreground from background trajectories. Each type of trajectories is encoded
by a different descriptor. Specifically, frame-to-frame fundamental matrices are used
to describe the camera motion. Moreover, surrounding scene appearance is explicitly
computed on background trajectories. Traditional foreground descriptors (e.g. MBH,
HOF, HOG and trajectory shape) are also aggregated in action description. Finally,
this set of descriptors is encoded separately using the BoF framework.

action recognition pipeline. Given a set of labelled videos, a set of features is
extracted from each video, represented using visual descriptors, and combined
into a single video descriptor used to train a multi-class classifier for recognition.

In this paper, we use dense point trajectories (short tracks of a densely
sampled set of pixels in a video [23]) as our primitive features. By estimating
frame-to-frame camera motion (fundamental matrix), we separate foreground
trajectories (corresponding to the action) from background ones. Each type of
trajectory is represented using a different descriptor. Foreground trajectories
are represented using conventional visual properties (e.g. MBH, HOF, HOG,
and trajectory shape), while the surrounding scene appearance is described us-
ing SIFT. Foreground and background trajectories are then encoded separately
using the BoF framework as illustrated in Figure 2. Unlike other action recog-
nition methods, we not only use the frame-to-frame camera motion to separate
foreground from background, but we also use it to describe a video. This is done
by encoding all frame-to-frame fundamental matrices in a video using the BoF
framework. We use all three descriptors (foreground, surrounding scene appear-
ance, and camera motion) to train a multi-class classifier for recognition. In this
paper, we argue and show that combining a foreground-only description [23]
with additional cues (background/context and camera motion) provides a richer
and more discriminative description of actions.

2.1 Camera Motion

Since videos are normally filmed with the intention of maintaining the subject
within the image frame, there exists a relationship between the estimated camera
motion and the underlying action. In this paper, we argue and show that this
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relationship can be a useful cue for discriminating certain action classes. As
observed in the three top rows of Figure 3, there is a correlation between how
the camera moves and the actor For example, in the second row, the cameraman
performs a downward tilt to follow the diver’s movement. Here, we do not claim
that this cue is significant for all types of actions, since very similar camera
motion can be shared among classes, as shown in Figure 3 (last two rows).
Instead of using a homography to encode camera motion, we estimate the more
general fundamental matrix for each pair of frames in a video using the well-
known 8-point algorithm [6]. As mentioned earlier, a homography is suitable
when the camera is not translating or when the background is planar; however,
it is not applicable in more complex or cluttered scenes.

Fig. 3. A generic camera motion descriptor can be a useful cue for discriminating
specific action classes. The first three rows contain a characteristic correlation between
how the camera moves and the action itself. However, this cue is not significant for all
action classes, as exemplified in the last two rows, where there is no camera motion.

In this paper, we compute the camera motion descriptor as follows. After
estimating all pairwise fundamental matrices using RANSAC, we encode the
camera motion of a video using the BoF framework. We call this descriptor
CamMotion and it is complementary to other visual descriptors of the action.
Unlike most existing work, we embrace camera motion and employ a low-level
feature to represent it in a video.

2.2 Foreground/Background Separation

We use the global motion model introduced in Section 2.1 to compensate for
camera motion in the extracted point trajectories. To separate background from
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Fig. 4. Results from our foreground-background separation and illustration of the en-
coded information by the surrounding scene features. (top) Frame sequence sampled
from a ’long jump’ video. Note that the camera is panning to follow the actor. (middle)
Camera compensation allows to perform a background-foreground separation. Notice-
ably, foreground feature points are mostly related with the actor. (bottom) Illustration
of information captured by our surrounding appearance SIFT descriptor. In order to
achieve a meaningful illustration, descriptor dimensionality is reduced to 3 dimensions
to produce a color-coded image. Surrounding appearance is represented using back-
ground points only, thus, avoiding confusion with pixels of the actor him/herself.

foreground, we assume that a background trajectory produces a small frame-
to-frame trajectory displacement, after camera motion compensation. In fact,
we simply threshold the overall displacement, which is computed for the ith

trajectory as

D(i) =

L−1∑
j=1

∥∥xi
j+1 − xi

j

∥∥2
2
. (1)

Here, xi
j represents the jth point in the ith trajectory. Trajectories are associ-

ated with the background if D(i) ≤ α; otherwise, they are labeled as foreground.
Empirically, we set this threshold value to α = 3 pixels. Figure 4 shows an ex-
ample of our foreground-background separation in a video associated with the
action long jump. Here, foreground and background trajectories are color-coded
in red and blue respectively. Clearly, the foreground trajectories correspond to
the underlying action itself, while background trajectories correspond to static
background pixels undergoing camera motion only. Our proposed separation will
allow each type of trajectory (foreground and background) to be represented in-
dependently and thus more reliably than other methods that encode context
information using information from entire video frames [15].

In this paper, we represent foreground trajectories using a foreground de-
scriptor, comprising of Trajectory Shape, HOG, HOF, and MBH as in [23]. In
the following section, we detail how surrounding scene appearance is encoded.
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Fig. 5. Each row presents five different thumbnails taken from different videos of
UCF50 dataset. (top) Visual examples of the ‘rowing’ action class. As observed all
thumbnails share distinct background appearance i.e. in all water is present and also
in the majority there is a common landmark. (middle) Visual examples of the ’billiard’
action class. A billiard table and the indoor environment of the action, enable our
surrounding appearance descriptor to capture critical information about that action.
(bottom) Visual examples of the ’drumming’ class. Note that these examples share
visual cues that are largely ignored if only foreground features are encoded.

2.3 Background/Context Appearance

Many visual cues can be used to discriminate human actions. Beyond local mo-
tion and appearance properties, the surrounding in which an action is performed
is a critical component to recognize actions. For example, a ’springboard’ action
can only be executed if there is a pool, which has distinctive appearance prop-
erties. This motivates us to encode the visual appearance of the static scene.
Surrounding scene appearance is encoded using SIFT descriptors [14] around
trajectory points associated with the background. We detect SIFT keypoints in
a dense manner and then filter out those that fall within the union of foreground
trajectories. Context appearance focuses more on the scene itself, as observed in
Figure 5, where it can be used to aggregate meaningful information about the
action. For example, all the examples of the action ’rowing’ contain a shared
scene appearance and layout which can be exploited to model the background
trajectories. Unlike other methods that encode scene context holistically (using
both foreground and background) in a video [15], separating the background
(or context) from the foreground produces a more reliable and robust context
descriptor.

2.4 Implementation details

Codebook Generation. We generate the visual codebook in two different ways:
(a) using k-means clustering or (b) using a Gaussian Mixture Model (GMM),
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Fig. 6. Due to the large number of features extracted by the dense trajectory method,
sub-sampling is required to generate a codebook. Here, we explore the effect of the
number of sampled features on the overall performance. A comparison is done on two
different datasets under the Bag-of-Features framework. Also, the performance of two
different sampling strategies is reported: uniform and spatial clustering. As noticed,
selecting more features to form the codebook and using the spatial clustering approach
improve recognition performance in both datasets.

which captures a probability distribution for the feature space. In both cases, a
codebook is computed for each descriptor (context appearance, foreground, and
camera motion) separately. Since the trajectory extraction method produces a
large number of features from the training videos resulting in intractable code-
book computation, it is necessary to sub-sample these features. In order to estab-
lish a trade-off between computation cost and recognition performance, we study
the effect of the number of sampled features for computing a visual codebook, as
observed in Figure 6. This experiment includes results on two different datasets
using k-means clustering to form the visual dictionary. Moreover, we investigate
two types of sub-sampling strategies, namely uniform random sampling and ran-
dom sampling based on spatially clustered (using simple distance thresholding)
trajectories. Based on results in Figure 6, the latter strategy outperforms the for-
mer one, especially when a small number of features are sampled. Therefore, in
our experiments, we generate the visual codebook from 5 million feature points
( 8GB RAM required per descriptor) sampled by the spatial clustering strategy.

Representation and Classification. Feature encoding can be performed using
one of two popular approaches: (a) traditional histogram quantization (VQ), or
(b) Fisher vectors introduced in [19]. Different types of normalization are per-
formed to provide robustness to feature vectors: (a) l2 normalization (L2) [19],
(b) power normalization (PW) [19], and (c) intra-normalization (IN) [24]. In our
experiments, we focus on two classification frameworks that have been widely
adopted in the action recognition literature. For simplicity, we summarize the
details of each framework in Table 1. The first follows the Bag of Features (BoF)
paradigm, using k-means for visual codebook generation, VQ for feature encod-
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ing, L2 normalization, and a χ2 kernel SVM within a multichannel approach
(MCSVM) [26]. In this case, the kernel is defined as

K(xi,xj) = exp

(
−
∑
c

1

2Ωc
Dc(xi,xj)

)
, (2)

where Dc(xi,xj) is the χ2 distance for channel c and Ωc is the average channel
distance. For the second framework, we enlist a more robust feature encoding
scheme (Fisher vectors) using a visual codebook generated by learning a GMM on
the subsampled training data. Here, each action video is represented as a high
dimensional Fisher vector that undergoes three normalization procedures, L2,
PW and IN as in [24]. The three normalized features channels are concatenated
and discriminative action models are learned using a linear SVM (LSVM).

Table 1. Comparison of adopted frameworks for action recognition.

Representation ↓ Codebook Encoding Normalization Classifier

Bag of Features k -means VQ L2 MCSVM
Fisher vectors GMM Fisher vectors L2+PW+IN LSVM

3 Experimental results

In this section, we present extensive experimental results that validate our con-
textual features within the action recognition pipeline. We compare the perfor-
mance of both classifications frameworks mentioned in Section 2.4, as well as,
state-of-the-art recognition methods on benchmark datasets, when possible.

3.1 Datasets and Evaluation Protocols

We use four public datasets [11, 15, 16, 20] and their corresponding evaluation
protocols. In this section, we briefly describe each dataset.

HMDB51 [11] includes a large collection of human activities categorized on
51 classes. It comprises 6766 videos from different media resources i.e. digi-
tized movies, public databases and user generated web video data. Since many
of the videos contain undesired camera motions, the authors provide a stabi-
lized version of the dataset. However, since we look at the camera motion as an
informative cue, the pre-stabilized version of the dataset is used. To evaluate
classification performance, we adopt the same protocol proposed by the authors,
namely the mean accuracy under three fixed train/test splits of the data.
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Hollywood2 [15] contains a large number of videos retrieved from 69 different
Hollywood movies. It is divided into 12 categories including short actions such
as ’Kiss’, ’Answer Phone’ and ’Stand Up’. This dataset remains one of the most
challenging despite the small number of action classes. Change of camera view,
camera motion and unchoreographed execution introduces significant difficulty
to the recognition task. To evaluate performance, we follow the authors’ protocol,
whereby videos are separated in two different sets: a training set of 823 videos
and a testing set of 884 videos. We use training videos to learn our action models
and then compute the mean average precision (mAP) over all action classes.

Olympic Sports [16] or Olympic comprises a set of 783 sport related YouTube
videos. This set of videos are semi-automatically labeled using Amazon Me-
chanical Turk. This dataset establish new challenges for recognition because the
underlying action classes range from simple actions (e.g. ’Kiss’) to complex ac-
tions (e.g. ’Hammer Throw’). All of these complex actions are related to olympic
sports including actions like ’Long Jump’, ’Pole Vault’ and ’Javelin Throw’. As
proposed by the authors, we measure performance by computing the mAP over
all action classes.

UCF50 [20] includes 6618 videos of 50 different human actions. This dataset
presents several recognition challenges due to large variations in camera motion,
cluttered background, viewpoint, etc. Action classes are grouped into 25 sets,
where each set consists of more than 4 action clips. Recognition performance is
measured by applying a leave-one-group-out cross-validation and average accu-
racy over all group splits is reported.

3.2 Impact of Contextual Features

In this section, we conduct experiments to evaluate the contribution of our pro-
posed camera motion (CamMotion) and surrounding scene appearance descrip-
tor (SIFT) to overall action recognition performance. Our baseline corresponds
to using only Foreground features for describing actions. Using descriptors indi-
vidually is compared to this baseline. Also, we investigate the effect of combining
the proposed features with Foreground cues. As mentioned earlier, both action
recognition frameworks (BoF and Fisher vectors) are explored. Below, we present
an analysis of our obtained results.

Representation. As suggested in recent works [19,23,24], Fisher vectors register
an improved performance over traditional BoF representations. We found in
our experiments that Fisher vectors also boost the performance of using our
contextual descriptors. These results are reported in Table 2. However, we note
that using Fisher vectors is less important with our CamMotion descriptor due
to its low dimensionality.
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Table 2. Impact of our surrounding scene appearance and camera motion features
on recognition performance. Bag-of-Features encoding generally performs worse than
Fisher vectors. Both surrounding SIFT and CamMotion show important improvements
in performance when they are combined with foreground descriptors.

Features Datasets

Foreground SIFT CamMotion HMDB51 Hollywood2 Olympics UCF50

Framework: Bag of Features

X 51.2% 60.1% 79.8% 85.9%

X 19.5% 28.7% 36.4% 45.7%

X 13.5% 21.8% 26.9% 19.3%

X X 53.8% 60.9% 81.1% 87.2%

X X 50.9% 60.4% 80.6% 86.8%

X X 20.7% 36.2% 43.7% 50.3%

X X X 51.7% 61.6% 81.7% 87.6%

Framework: Fisher vectors

X 56.5% 62.4% 90.4% 90.9%

X 20.1% 28.5% 39.6% 49.8%

X 14.1% 22.1% 27.2% 19.5%

X X 59.2% 63.5% 91.6% 93.3%

X X 55.9% 62.9% 91.3% 93.1%

X X 22.3% 36.5% 46.5% 54.3%

X X X 57.9% 64.1% 92.5% 93.8%

Surrounding Appearance. While the surrounding SIFT features achieves a dis-
crete performance by itself, it also produces a notable improvement when com-
bined with foreground descriptors. As Table 2 reports, performance is signifi-
cantly improved over all datasets. Interestingly, we note that this features pro-
duces higher improvements in HMDB51 and UCF50 i.e. +2.7% and +2.4% re-
spectively.

Camera Motion. Our experiments provide evidence that action recognition per-
formance can be improved when global camera motion is incorporated with Fore-
ground features. Our CamMotion feature provides slightly lower contributions in
performance than the surrounding SIFT feature, in general. We observe a con-
tribution over all datasets except on HMDB51 where recognition performance
decreases. This negative effect is attributed to the extensive shared shaky cam-
era motion in most video sequences of this dataset. This prevents CamMotion
from capturing discriminative cues across the action classes.

Foreground-Background Separation. As described in Section 2, we perform a
weak separation between background and foreground feature trajectories. Here,
we measure the effect on performance of this separation. We note that this
separation provides a significant boost in performance, as observed in Table 3.
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When feature points are localized on the background, surrounding SIFT focuses
on the scene appearance avoiding information of actors and foreground objects.
Unlike other methods that extract context information from all the trajectories
(both background and foreground) in the video, we see that extracting surround-
ing SIFT and CamMotion features from the background alone improves overall
performance. These results motivate our weak separation step as a necessary
strategy in the action recognition pipeline. For the surrounding SIFT features,
this step improves performance by +0.3% for HMDB51, +4.2% for Hollywood2,
+5.2% for Olympics and +3.9% for UCF50. The same behavior is observed with
our CamMotion descriptor, where performance is boosted in all datasets when
the Fundamental Matrix is computed using background trajectories.

Table 3. Effect of separating background feature points on the surrounding SIFT and
CamMotion features. These features are extracted using foreground and/or background
trajectories. Our results consistently show that our proposed contextual features are
most discriminative when they are extracted from background trajectories only. This
motivates our proposed weak separation step and validates why it should be used in
the action recognition pipeline.

Feature points Datasets
Feature ↓ Foreground Background HMDB51 Hollywood2 Olympics UCF50

SIFT X 19.5% 22.1% 33.5% 44.7%
SIFT X 20.1% 28.5% 39.6% 49.8%
SIFT X X 19.8% 24.3% 34.4% 45.9%

CamMotion X 9.7% 14.9% 19.5% 13.7%
CamMotion X 14.1% 22.1% 27.2% 19.5%
CamMotion X X 12.9% 18.7% 21.8% 17.2%

3.3 Comparison with State-of-the-Art

Here, we compare our proposed method with recent and popular methods in
the literature [8, 10, 23]. The results of this comparison are reported in Table
4. We present results of our own implementation of [23], which corresponds to
our baseline (Foreground). The performance gain over the method in [23], which
reports the best performance in the literature, is as follows: +2% for HMDB51,
+1.4% for Olympic Sports and 2.6% for UCF50. We also achieve a comparable
performance on the Hollywood2 dataset with only 0.2% less in the mAP score.
It is noteworthy to mention that the method in [23] requires a human detection
(HD) step to perform recognition. Since human detection is not included in our
trajectory extraction stage, a more direct comparison is done with the non-HD
version of [23]. In this case, our method outperforms their improved trajectory
approach by 3.3% for HMDB51, 1.1% for Hollywood2, 2.3% for Olympic Sports
and 3.3% for UCF50.
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Table 4. Comparison with the state-of-the-art on four benchmark datasets. Our
method improves reported results in the state-of-the-art for three different datasets,
HMDB51, Olympic Sports and UCF50 and obtains comparable performance on Hol-
lywod2. Note that our proposed method does not require explicit human detection.

Approach ↓ HMDB51 Hollywood2 Olympics UCF50

Jiang et al. [10] 40.7% 59.5% 80.6 -
Jain et al. [8] 52.1% 62.5% 83.2 -
Wang et al. [23] non-HD 55.9% 63.0% 90.2% 90.5%
Wang et al. [23] HD 57.2% 64.3% 91.1% 91.2%

Our methods with Fisher vectors

Baseline (Foreground) 56.5% 62.4% 90.4% 90.9%
Foreground + SIFT 59.2% 63.5% 91.6% 93.3%
Foreground + SIFT + CamMotion 57.9% 64.1% 92.5% 93.8%

4 Conclusion

In this paper, we propose a set of novel contextual features that can be incor-
porated into a trajectory-based action recognition pipeline for improved per-
formance. By separating background from foreground trajectories in a video,
these features encode the appearance of the surrounding as well as the global
camera motion, which can be shown to be discriminative for a large number
of action classes. When combined with foreground trajectories, we show that
these features, can improve state-of-the-art recognition performance on popular
and challenging action datasets, without resorting to any additional processing
stages (e.g. human detection).
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